Complete 12 hours (four courses) of technical electives. The purpose of these courses is to strengthen the engineering education of the student by a) deepening fundamentals, b) helping the student learn to apply engineering fundamentals in specific areas of interest, and/or c) helping the student to develop critical skills related to engineering practice.

The technical electives are normally 400-level or higher.

At least two courses (6 credit hours) must be in mechanical engineering.

No courses may be below the 300-level.

A maximum of three credit hours in Me En 497 or other

All courses must be of an acceptable level from mechanical engineering, civil engineering, chemical engineering, computer engineering, electrical engineering, mathematics, statistics, physics, chemistry, or computer science, or be on the approved elective list in the department office. If a student wishes to count a course outside these areas as an elective, approval must be granted before the course is taken. Approval is requested by submitting a one-page petition to the department undergraduate committee that lists all of the proposed electives and demonstrates how the proposed exception meets the purpose described above.

No course used to satisfy other major requirements for graduation may be used as an elective.

Complete 12 hours (four courses) of technical electives. The purpose of these courses is to strengthen the engineering education of the student by a) deepening the student’s understanding of engineering and/or science fundamentals, b) helping the student learn to apply engineering fundamentals in specific areas of interest, and/or c) helping the student to develop critical skills related to engineering practice.

The technical electives are normally 400-level or higher and may be used as long as the following requirements are met:

- At least two courses (6 credit hours) must be in mechanical engineering.
- No courses may be below the 300-level.
- A maximum of three credit hours in Me En 497R or other independent project courses may be applied to meet technical elective requirements.
- All courses must be of an acceptable level from mechanical engineering, civil engineering, chemical engineering, computer engineering, electrical engineering, mathematics, statistics, physics, chemistry, or computer science, or be on the approved elective list.
- No course used to satisfy other major requirements for graduation may be used as an elective.

A. General Elective Option

Complete a total of 12 elective hours from the following:

1. Complete a minimum of 6 hours from 400- or 500-level mechanical engineering courses.
2. Complete a maximum of 6 hours of acceptable electives outside of mechanical engineering.

B. Manufacturing Option

The Society of Manufacturing Engineers has identified four areas of competency for manufacturing engineering as follows: (1) materials and manufacturing processes; (2) process, assembly and product engineering; (3) manufacturing competitiveness; and (4) manufacturing systems design.
An option in manufacturing engineering is available. It may be completed by taking the following 12 hours of technical electives:

1. Complete 3 hours from the following:
 - Me En 585 Mfg Competitiveness: Qual & Prod 3.0
 - Mfg 532 Manufacturing Systems 3.0

2. Complete 3 hours from the following:
 - Me En 537 Advanced Mechanisms, Robotics 3.0

3. Complete 3 hours from the following:
 - Me En 482 Mfg. Systems Analysis & Design 3.0
 - Me En 486 Automation 3.0
 - Me En 452 Intermediate Materials 3.0

4. Complete 3 additional hours from the manufacturing electives list.

When combined with required courses for all mechanical engineering majors related to manufacturing, namely Me En 250, 382, 475/476, and Stat 201, this option provides a strong foundation in manufacturing engineering.

Suggested Sequence of Courses:

FRESHMAN YEAR

1st Semester
- First-Year Writing or A Htg 3.0
- Bio 100 3.0
- Math 112 (FWSpSu) 4.0
- Me En 191 (FW) 0.5
- Religion Cornerstone course 2.0

Total Hours 15.5

2nd Semester
- Chem 105 (FWSpSu) 4.0
- Math 113 (FWSpSu) 4.0
- Me En 101 (FWSp) 3.0
- Religion Cornerstone course 2.0

Total Hours 16.0

SOPHOMORE YEAR

3rd Semester
- CE En 203 (FWSp) 3.0
- CE En 204 (FWSu) 3.0
- Math 113 (FWSpSu) 4.0
- Math 302 (FW) 4.0
- Religion Cornerstone course 2.0

Total Hours 18.0

4th Semester
- En 301 (FWSp) 3.0
- Me En 250 (FWSp) 3.0
- Me En 272 (FWSp) 3.0
- Me En 273 (FWSp) 3.0
- Math 303 (FW) 4.0

Total Hours 16.0

JUNIOR YEAR

5th Semester
- Stat 201 (FWSu) 3.0
- Me En 321 (FWSp) 3.0
- Me En 330 (FWSp) 3.0
- Me En 335 (FWSp) 3.0
- Me En 382 (FWSu) 3.0
- Religion Cornerstone course 2.0

Total Hours 17.0

6th Semester
- Eng 316 3.0
- Me En 331 (FWSu) 3.0
- Me En 362 (FWSu) 3.0
- Me En 372 (FWSp) 3.0
- Me En 393 (FW) 3.0
- Letters GE 2.0

Total Hours 17.0

SENIOR YEAR

7th Semester
- Me En 340 (FWSp) 3.0
- Me En 475 (F) 3.0
- Technical elective 3.0
- Technical elective 3.0
- University Core Civilization 1 elective 3.0
- Religion elective 2.0

Total Hours 17.0

8th Semester
- Me En 476 (W) 3.0
- Technical elective 3.0
- Technical elective 3.0
- University Core Civilization 2: Arts elective 3.0
- Religion elective 2.0

Total Hours 14.0

Note: Students are encouraged to complete an average of 16–17 credit hours each semester or 32–34 credit hours each year, which could include spring and/or summer terms. Taking fewer credits substantially increases the cost and the number of semesters to graduate.

THE DISCIPLINE:

Mechanical engineers work with concepts, ideas, and products that are primarily mechanical or energy related. Mechanical engineering is a broad discipline that prepares a person to contribute in a wide range of fields such as aerospace, computer graphics, power generation, machine tools, petroleum, agricultural and construction equipment, medicine, government, and all types of transportation. A mechanical engineer may work in research, design, analysis, manufacturing, testing, operations, sales, or management. Engineers use critical problem-solving methods and basic principles of mathematics and science to creatively solve problems.

EDUCATIONAL OBJECTIVES:
The objectives of the undergraduate Bachelors of Science program in the Department of Mechanical Engineering at Brigham Young University are to:

1. Teach the fundamental concepts of math, science, and mechanical engineering in order to produce graduates who demonstrate technical excellence and provide service to their profession, community, family, and church.
2. Instill a desire and ability to learn continuously, both through study and faith, to enable graduates to meet the changing demands of their profession and personal life.
3. Provide practical and open-ended engineering experiences in order to develop graduates who think independently and demonstrate leadership and creativity.
4. Engage students in activities to produce graduates who communicate and work effectively and ethically with people of diverse backgrounds.

(continued on next page)
Learning Outcomes
To assure that these objectives are reached, the department has articulated twelve outcomes of the BS program. Each student graduating from this program is expected to have:
1. A basic understanding of fundamental physical phenomena and governing principles.
2. The ability to develop and solve mathematical models of fundamental physical phenomena and apply them to predict the behavior of engineering systems.
3. The ability to use engineering principles to design an innovative system, component, or process to meet desired needs.
4. The expertise to plan and conduct an experimental program and evaluate the results.
5. The ability to use modern engineering tools and techniques in engineering practice.
6. An understanding of manufacturing processes and planning.
7. Effective oral and written communication skills.
8. The ability to work with and lead others to accomplish goals.
9. An appreciation of history, philosophy, literature, science, and the fine arts and how they influence the culture and behavior of societies.
10. Personal behavior demonstrating and practicing high moral and ethical standards.
11. The ability to practice engineering in a global environment.
12. A desire for and commitment to lifelong learning and service.

All courses in the curriculum are designed to help achieve these outcomes.

The curriculum in mechanical engineering is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc. (ABET).

CAREER OPPORTUNITIES:
A bachelor of science degree in mechanical engineering provides widely recognized professional training for careers in industry, government, and other areas. Most industrial companies hire some mechanical engineers. Companies that make mechanical or energy-related products may hire mostly mechanical engineers. As a result, many mechanical engineering positions are available worldwide. Mechanical engineers have job opportunities in companies involved in such areas as aircraft and spacecraft design; manufacturing processes; product safety and reliability; solar energy; electronic equipment packaging and cooling; power plant design; jet, train, truck, and automobile engines; environmental protection; artificial intelligence; robotics; medical and hospital equipment; new material development and applications; and technical writing. Increasing numbers of positions utilize foreign language experience.

A graduate in mechanical engineering is prepared for advanced studies in the field as well as in a variety of other disciplines, including law, medicine, and business administration. Perhaps most important to graduates are the problem-solving strategies and thinking processes acquired in the study of mechanical engineering that help one to succeed in any area of endeavor.

UNDERGRADUATE ADMITTANCE REQUIREMENTS:
Any student may choose to major in mechanical engineering and to enroll in all classes in the preprofessional program (Basic Science Core and Mathematics Core Requirements).

Professional Program Acceptance:
Students must be accepted into the professional program before they may take the professional Me En core or technical electives. To apply, students must have completed the following four courses at a college or university (neither AP nor Concurrent Enrollment credit meet this requirement):
1. Phscs 121
2. One course (first course taken) from the Mathematics Core.
3. Me En 101 from the preprofessional course list (item 3 in the major requirements).
4. Me En 191 from the preprofessional course list (item 3 in the major requirements).

Acceptance is based on the GPA (equally weighted) from the three graded courses listed above. The GPA cut-off is determined by fixing the number of students admitted to the program and will vary from year to year. The current limit of students admitted per year is 220 and the GPA cut-off for the past year was 3.33. Both the limit and the GPA cut-off are subject to change. Only one repeat of each course is allowed for purposes of determining professional program acceptance. If a student has taken more than three professional application courses or has repeated any of these courses, only the grades of each of the first three courses taken or the highest grade when a course is retaken will be considered. Transfer students from institutions that do not have accredited engineering programs will be considered for provisional admission for one semester based on transferred courses but will be retained or denied based on three courses taken at BYU. The courses used will be the next three courses on the engineering flow chart following courses 1-3 listed above.

Normal application deadlines are July 1, October 1 and February 1. Applications from transfer students who have been admitted to the university may be considered at other times.

Professional program application forms are available in the college advisement center, on the ME website, and in the department office.

ACADEMIC STANDARDS AND CONTINUANCE:
On gaining acceptance into the professional program, students must maintain a minimum university cumulative grade point average of 2.0. No more than 6 credit hours of grades below C– in required program courses (including preprofessional and professional) may be applied toward graduation. A professional program course may not be retaken more than once.