Outcome 1
Explain the electric and magnetic properties of radiation, molecules and bulk matter and solve problems related to these properties.
Outcome 2
Solve time-dependent quantum mechanical problems and apply these solutions to spectroscopy where light is the time-dependent perturbation.
Outcome 3
Explain angular momentum as possessed by atomic or molecular systems, various descriptions of how angular momentum can be coupled, and how conservation of angular momentum is important to spectroscopy.
Outcome 4
Apply solutions of the Schrödinger equation for simple systems (particle in a box, rigid rotor, harmonic oscillator, etc) to real systems (vibrational, rotational, and electronic energy states) for use in determining the energy of stationary states.
Outcome 5
Explain the origin of selection rules and derive electric and magnetic dipole, quadrupole, etc. selection rules for simple model quantum systems.
Outcome 6
Use symmetry arguments, including group theory and parity, to simplify the interpretation and explanation of atomic and molecular spectra.
Outcome 7
Use solutions to the model systems and the selection rules the predict spectra for atomic and molecular systems.
Outcome 8
Fit experimentally obtained spectra to the mathematical models to obtain physical constants.