Heterogeneous Catalytic Systems
Students will be exposed to the fundamentals of heterogeneous catalytic, and non-catalytic systems including potentially limiting mass-transfer and reaction resistances.
Analyzing Reactor Data
Students will be able to determine rate expressions by analyzing reactor data including integral and differential analysis on constant- and variable-volume systems.
Forward & Reverse Rates
Students will understand the relationship between forward and reverse rates and chemical equilibrium.
Environment
Students will understand and have a basic knowledge of how environmental considerations are incorporated into engineering problem solving.
Creative Thinking
Students will exhibit critical and creative thinking skills for analysis and evaluation of problems and cause-effect relationships.
Problem Solving
Students will demonstrate an ability to solve engineering problems.
Competing Reactions
Students will understand the kinetics of competing reactions and their influence on product yield and selectivity.
Multiple Isothermal Reactors
Students will be able to design systems of multiple isothermal reactors.
Rate Expressions
Students will be able to develop rate expressions from elementary step mechanisms using steady-state and quasi-equilibrium approximations.
Advanced Math Software
Students will be able to solve numerical problems using advanced math software.
Parallel Systems
Students will be able to select and size isothermal reactors for series and/or parallel systems of reactions.
Performance Calculations
Students will be able to size and do performance calculations on single, isothermal plug-flow, CSTR, and batch reactors for a single homogeneous or heterogeneous reaction given either rate data or a rate expression.
Kinetics
Students will understand fundamentals of kinetics including definitions of rate and forms of rate expressions and relationships between moles, concentration, extent of reaction and conversion.
Graphical Data
Students will demonstrate effective interpretation of graphical data.
Pore Diffusion
Students will understand the effects of mass and heat transfer, particularly pore diffusion, on heterogeneous catalytic systems.
Reactor Design Practical Considerations
Students will understand practical considerations of reactor design including materials of construction, mixing, heat transfer, and economics.
Technical Material
Students will demonstrate effective reading of technical material.
Solution Sophistication
Students will be able to rationalize units, make order of magnitude estimates, assess reasonableness of solutions, and select appropriate levels of solution sophistication.
Safety
Students will understand and have a basic knowledge of how safety considerations are incorporated into engineering problem solving.
Performance Equations
Students will be able to derive batch, CSTR, and PFR performance equations from general material balances.
Non-Isothermal Reactors
Students will be able to select and size non-isothermal reactors.
Heat Capacity
Students will understand and be able to apply the concepts of heat capacity, latent heat, heat of reaction, heat of combustion, and heat of formation.